skip to main content


Search for: All records

Creators/Authors contains: "Damsgaard, Anders"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Rapid ice loss is facilitated by sliding over beds consisting of reworked sediments and erosional products, commonly referred to as till. The dynamic interplay between ice and till reshapes the bed, creating landforms preserved from past glaciations. Leveraging the imprint left by past glaciations as constraints for projecting future deglaciation is hindered by our incomplete understanding of evolving basal slip. Here, we develop a continuum model of water-saturated, cohesive till to quantify the interplay between meltwater percolation and till mobilization that governs changes in the depth of basal slip under fast-moving ice. Our model explains the puzzling variability of observed slip depths by relating localized till deformation to perturbations in pore-water pressure. It demonstrates that variable slip depth is an inherent property of the ice-meltwater-till system, which could help understand why some paleo-landforms like grounding-zone wedges appear to have formed quickly relative to current till-transport rates. 
    more » « less
  2. Abstract

    Many subglacial environments consist of a fine‐grained, deformable sediment bed, known as till, hosting an active hydrological system that routes meltwater. Observations show that the till undergoes substantial shear deformation as a result of the motion of the overlying ice. The deformation of the till, coupled with the dynamics of the hydrological system, is further affected by the substantial strain rate variability in subglacial conditions resulting from spatial heterogeneity at the bed. However, it is not clear if the relatively low magnitudes of strain rates affect the bed structure or its hydrology. We study how laterally varying shear along the ice‐bed interface alters sediment porosity and affects the flux of meltwater through the pore spaces. We use a discrete element model consisting of a collection of spherical, elasto‐frictional grains with water‐saturated pore spaces to simulate the deformation of the granular bed. Our results show that a deforming granular layer exhibits substantial spatial variability in porosity in the pseudo‐static shear regime, where shear strain rates are relatively low. In particular, laterally varying shear at the shearing interface creates a narrow zone of elevated porosity which has increased susceptibility to plastic failure. Despite the changes in porosity, our analysis suggests that the pore pressure equilibrates near‐instantaneously relative to the deformation at critical state, inhibiting potential strain rate dependence of the deformation caused by bed hardening or weakening resulting from pore pressure changes. We relate shear variation to porosity evolution and drainage element formation in actively deforming subglacial tills.

     
    more » « less